
The C++ Standards Committee:
Progress & Plans

February 17, 2004

Walter E. Brown Marc F. Paterno

Computing Division

f Fermi National Accelerator Laboratory

2

fMotivation for this talk
• C++ has become the lingua franca
for HEP computer programming:

– But the scientific community is still under-
represented in the C++ standardization effort

– Fermilab joined the standards committee in 2000:

• FNAL has full voting privileges

• We are FNAL’s designated representatives

• Our goal is to keep you informed:

– Share our experiences and insights

– Communicate developments re future C++

– Solicit feedback for the committee

3

fOverview
• Background information:

– National & international umbrella organizations:

• Internal committee structure & procedures

• Formal and informal working arrangements

– C++ standardization timeline

– Work completed since: DRs, TC1, TR

• Ongoing work in language & library evolution:

– DRs and TR …
– … as prelude to C++0x

4

fISO JTC1-SC22/WG21
• ISO: International Standards Organization

– JTC1: Joint Technical Committee
for Information Technology

– SC22: Subcommittee for
Programming Languages,
their Environments,
and System Software Interfaces

– WG21: Working Group for C++

• ISO membership:

– Open only to national standards bodies …
– … of which ANSI is one

5

fANSI NCITS/J16
• ANSI: American National Standards Institute

– NCITS: National Committee for
Information Technology Standards

(formerly: Accredited Standards Committee X3)

– J16: Technical Committee for
Programming Language C++

• Fermilab is a voting member of J16

6

fWorking arrangements
• All meetings of WG21 and J16 are co-located:

– 2x/year; one in North America, one international

• All formal votes are taken twice:

– J16 first, with only its (U.S.) members voting

– WG21 second, with only national bodies voting

• Informal consensus is reached
before formal motions are brought to a vote:

– Hence formal motions generally pass with no
significant opposition

– All members share a strong commitment
to cooperation

7

fInternal organization
• All meeting attendees work closely together
for the common goal:

– J16 and WG21

– Voting “members” and non-voting “observers”
– Famous/notorious and unknowns

• Four “working groups” (subcommittees):
– Core language (25 pre-9/11; lately ~15)

– Library (30+ pre-9/11; lately ~20)

– Performance (<10 and diminishing)

– Evolution (~15 and growing)

8

fC++ standardization timeline
• ~1990: beginning of standardization effort

• '95, '96: C++ Draft Standards issued for
public comment; concerns addressed

• '97: Final C++ Standard approved

• '98: ISO balloting completed and ratified;
14882:1998 (informally: C++98) issued

• “1997-2000 was a deliberate period of calm to
enhance stability” (B. Stroustrup)

9

f1998-2003 accomplishments
• DRs (Defect Reports):

– Apparent error, inconsistency, ambiguity, or
omission in the published final Standard

– Failure of wording to meet Committee’s intent

• TC (Technical Corrigendum) #1:

– Collection of corrections to accepted DRs

– Merged with Standard, yielding ISO 14882:2003

– BSI authorized book publication (Wiley, 2003)

• TR (Technical Report) on C++ Performance:

– ISO balloting now in progress

– Approval, issuance expected shortly

10

fSample Defect Report
• Library Issue 69:

“Must elements of a vector be contiguous?”
– Affects Clause 23.2.4

– Status: DR (an accepted defect with an agreed
resolution); part of TC1

– Resolution: “The elements of a vector are stored
contiguously…”

• Few issues were/are this straightforward

11

f2001 to date
• 2001: Directions for C++0x seeded
committee discussion re Standard C++ future

– LWG began work toward a
Technical Report on C++ Library Extensions

– Full Committee to vote on final draft in late 2004

• 2002: formally decided to revise the Standard

– ISO requirement: must decide every 5 years
to ratify, amend, or withdraw

• All work now effectively aimed at C++0x:

– Incorporate post-TC1 corrections & the LWG TR

– Many additional proposals also being evaluated

12

fSuggested criteria for C++0x
• General principles:

– Minimize incompatibilities with C++98 and C99

– Keep to the zero-overhead principle

– Maintain or increase type safety

– Minimize “implementation-defined” & “undefined”

• Core language goals:
– Make C++ easier to teach and learn

– Make rules more general and uniform

• Library goals:
– Improve support for generic programming & other
programming styles

– Improve support for application areas

13

fKinds of issues being addressed
• Performance

• Selected specialized domain support

• Generalization, extension of current practice

• Component interoperability

• Coding convenience

• Improvements in type-safety, -correctness,
and the type system itself

14

fFeatures under consideration (partial list)

Unordered (hashed) containersStatic assertions

Random numbersDynamic libraries

Mathematical special functionsMove semantics

Shared-owner smart pointersCompile-time reflection

Enhanced function binderConcepts

Reference wrappersNull pointer constant

Member pointer adaptorsGeneralized initializer lists

Type traitsUser-defined literals

Tuple typesLocal classes as template parm's

Polymorphic fctn. obj. wrappersForwarding constructors

Regular expressionsdecltype and auto

Function result type traitsTemplate aliases

Standard LibraryCore Language

15

fIssue: performance
• Representative proposal: move semantics

• Observation: copying an object can be
expensive (e.g., deep copies of linked storage
structures)

• Basic idea: reduce cost, when possible, by
moving instead of copying

• Typically possible when the source object:

– Is disposable after the copy, or …
– Is about to get a new value after the copy

16

fMove semantics (courtesy H. Hinnant)
• Move is the ability to cheaply transfer the value of an
object from a source to a target, with no regard for
the value of the source after the move:

move
source’s value of
no more interest

initial state

final state

target source

copy
initial state

source’s value
left unchangedfinal state

17

fMove-aware std::vector
• std::vector can make good use of move semantics
when creating a new internal buffer:

old buffer

new buffer

old buffer

new buffer

• Elements are moved (not copied) to the new buffer

• Since the entire old buffer is about to be destroyed,
we don’t care about its elements’ post-move values

18

fAnd further …
• std::vector can make good use of move semantics
when inserting (or erasing) within a single buffer:

• Elements are moved
(not copied) within the
buffer to create a “hole” for
the new element

• Since each “hole” soon
receives a new value,
we don’t care about its
post-move value

19

fMove semantics: timing examples
• vector<string>::erase

std::string s(20, ' ');

std::vector<std::string> v(100, s);

clock_t t = clock();

v.erase(v.begin());

t = clock() - t;
} Move semantics 14 times faster!

• vector<multiset<string> >::erase

std::string s(20, ' ');

std::multiset<std::string> ms;

for (int i = 0; i < 100; ++I)

ms.insert(s);

std::vector<std::multiset<std::string> > v(100, ms);

clock_t t = clock();

v.erase(v.begin());

t = clock() - t;
} Move semantics 200 times faster!

20

fIssue: specialized domain support
• Representative proposals: random numbers
and mathematical special functions

• Both of wide utility to scientific communities

• Current library support is minimal (rand()
and trig functions), clearly inadequate for our
applications

• Involves first significant enhancement to
<math.h> in ~30 years

21

fFeatures of random numbers proposal
• Design is based on a flexible and extensible
framework:

– It’s easy to add user-defined distributions
– Any such added distributions will work seamlessly
with existing components

• Includes engines and distributions important
to our community:

– Engines’ outputs are guaranteed to be portable
and reproducible

– Distributions’ outputs are guaranteed to be
reproducible

22

fSummary of random numbers proposal

Bernoulli

Geometric

Poisson

Gamma

NormalXor combine

ExponentialDiscard block

BinomialSubtract with carry

Uniform floating-pointMersenne twister

Uniform integerLinear congruential

DistributionsEngines

23

fRandom numbers proposal status
• Fermilab hosted the proposal’s author for a
week in 2002 and provided design criteria
and technical guidance

• Accepted for Library Technical Report

• Boost provides one near-implemention

• At least one vendor has implemented and is
planning to ship

• We are proposing additional distributions for
C++0x

24

fDistributions approved and proposed
• “Uniform” family:

– integer uniform,
floating-point
uniform

• “Bernoulli” family:
– Bernoulli, binomial,
geometric, negative
binomial

• “Poisson” family:
– Poisson, exponential,
gamma, Weibull,
extreme value

• “Normal” family:
– Normal, lognormal,

χ2, Breit-Wigner,
Fisher’s F, Student’s t

• “Sampling” family:
– Histogram,
cumulative
distribution function

• “Addams” family:
– (just kidding; sorry)

25

fSummary of special functions proposal

• Bessel/Neumann (6)

• Legendre (2)

• Spherical harmonics

• Hermite

• Laguerre (2)

• Hypergeometric (2)

• Elliptic integrals (6)

• Beta

• Exponential integral

• Riemann zeta

• Error (2)

• Gamma

26

fWhy standardize special functions?
• Quality and reliability:

– Professional attention to important details often
overlooked by typical application programmers:

• Lack of generality when a specific problem is at hand

• Insufficient attention to details: corner cases, errors, …

• Portability and re-use:

– Focus on problems rather than on issues related
to infrastructure or platform dependency

• Significance:

– Greatly enhance and promote usage among
computing communities in the scientific,
engineering, and mathematical disciplines

27

fSpecial functions proposal status
• Initial reaction: reluctance by vendors, largely
due to amount of work and perceived lack of
general user interest

• Accepted for Library Technical Report as
result of (ahem) our lobbying efforts

• Implementation by at least one vendor is well
under way

• A bonus: also under active consideration for
the C programming language

28

fIssue: component interoperability
• Representative proposal: shared-ownership
smart (resource-managing) pointers

• No pointer type having shared-ownership
semantics is uniformly available today:

– So we all reinvent and produce unique versions,
a situation much like the days before std::string

– Treated in depth by numerous textbooks, yet …
– … correct smart-pointer implementation (even by
experts) is known to be “exceedingly difficult” …

– … and especially so when exceptions are taken
into account

29

fExample of a subtlety

class C;

typedef C * C_ptr;

void f(C_ptr, int);

int g();

void oops() {
C_ptr p (new C);
f(p, g()); // leaks memory if g() throws …

delete p; // … since we’ll never get here

}

30

fHow shared_ptr<> helps

class C;

typedef shared_ptr<C> C_ptr;

void f(C_ptr, int);

int g();

void okay() {
C_ptr p (new C);
f(p, g()); // no leak, even if g() throws

// bonus: no client code need for explicit deletion

}

31

fIn brief
• Pointers naturally appear in function and
library interfaces

• The only managing pointer in C++ today is
std::auto_ptr<> but it has no shared
ownership semantics

• Key insight: All information needed for proper
managed object destruction is captured when
a smart pointer is initialized

32

fFeatures/benefits of shared_ptr<>
• Allows programmers to avoid pitfalls of:

– Manual memory resource management

– Memory access via dangling (invalid) pointer

• Provides:

– Far clearer expression of programmer intent

– Safer pointer parameter passage

• Has other uses and features:

– Standard container contents (unlike auto_ptr<>)

– Companion non-sharing observer weak_ptr<>

– Handle-body and other pointer-based patterns
and idioms

33

fIssues: convenience, generalization
• Representative proposal: enhanced function
binder

• Generalizes, extends current standard library
adapters: bind1st(), bind2nd(), ptr_fun(),
mem_fun(), mem_fun_ref()

– Applicable to functions, member functions, and
function objects alike

– Independent of arity

– Well-suited for in-place use in conjunction with
standard algorithms; often avoid need to code
numerous out-of-line custom functions

34

fBasics of bind

int g(int a, int b) { return a + b; }

bind(g, 11, 12) // a niladic function object

bind(g, 11, 12) () // same as g(11, 12)

bind(g, _1, 16) (x) // equivalent to g(x, 16)
bind2nd(ptr_fun(g), 16)(x) // g(x, 16)

int h(int a, int b, int c) { return a + b + c; }

bind(h, _3, _2, _1) (x, y, z) // h(z, y, x)
bind(h, _3, _3, _3) (x, y, z) // h(z, z, z)

35

fComposition via bind

class Track {
…
double pT() const;
double dca() const;

};

std::vector< Track > v(…);

std:sort(v.begin(), v.end()
, bind(less<double> ()

, bind(& Track::pT, _1)
, bind(& Track::pT, _2)

)) ;

36

f“And now for something … different”
• Previous discussion focus:

– Concrete proposals already accepted

– Now being tweaked for final wording, etc.

• But there are many other ideas in various
stages of discussion, development, drafting

• Of particular interest to our community:

– Dynamic libraries (.so , .dll)

– Reflection

37

fDynamic libraries
• “Components gathered together by the
operating system when the application runs”

• Today “an application that uses dynamic
libraries cannot be written entirely in
standard C++”

• “The terminology, the compiler and linker
mechanisms, and the semantic rules for
dynamic libraries vary widely from system to
system”

38

fImportant scenarios for dynamic libraries
• Library code that is provided via one or more
dynamic libraries:

– The C++ standard library

– A third-party library

• Application code that uses one or more
dynamic libraries:

– All known at (static) link time

– Explicitly loaded/unloaded at run time

– Mixture of both?

39

fRuntime linkage support issues
• Concepts and nomenclature not in the current
Standard:

– “Linkage unit,” “linkage unit identifier,”
“shared linkage,” “tentative resolution,” …

• Runtime linkage impact on:

– Program model & phases of translation

– ODR (One-Definition Rule)

– Type identification and other meta-data

– Construction/destruction of static objects

• Declaration syntax describing runtime linkage

• Syntax/semantics of loadable libraries

40

fReflection
• Entities reflect when they examine
themselves:

– Can happen at compile time or at run time

– Often expressed via a “meta-object protocol”

• Classical application is serialization for
persistence:

– Describing the object in some agnostic format

– Many difficult issues: pointers, portability, …
– Lots of library-based attempts, but limited success

– Complete solution needs language support

41

fLimited standardization activity to date
• Why?

– Too many items competing for attention and
resources

– No agreed-upon “prior art” on which to standardize

• Research efforts under way:

– EDG-based “Metacode” project (D. Vandevoorde)
– gcc-based “Compile Time Reflection for C++”
(G. Dos Reis, J. Maddock, et al.)

• We are writing a paper to try to spur
Committee interest/activity

42

fSample of what else is on the horizon
• Computer arithmetic has historically been
largely based on binary representation

• A recently-promulgated ISO standard
promotes the cause of decimal arithmetic:

– Primarily motivated by commercial interests, but
also of interest to the scientific world

– Vendor commitment to new hardware in support
of decimal arithmetic

• Long-term view suggests:

– Binary arithmetic will stagnate/fossilize, and

– Decimal arithmetic will dominate numeric types

43

fMoving forward on decimal arithmetic
• C++ is exploring language and library
support for decimal arithmetic:

– Historically unprecedented cooperation with
ANSI and ISO Standards Committees for
Programming Language C

– Many thorny problems need to be addressed

• Sample of agenda:

– New native decimal types

– Supporting functionality (e.g., operators, library
functions, I/O, …)

– Interoperability with binary data

44

fSummary
• C++ continues to be of interest to Fermilab:

– Expressiveness

– Performance

– Significant community experience

• C++ is being enhanced, along many axes, in
directions of substantive interest to us:

– We’ve been actively nudging it in these directions

• Standard components benefit us all:

– Require less in-house development/maintenance

– Enhance efforts to share code

– Allow us to focus on physics, not infrastructure

45

fReferences
• N1451: “A Case for Template Aliasing”
• N1452: “A Proposal to Add an Extensible
Random Number Facility … (Revision 2)”

• N1542: “A Proposal to Add Mathematical
Special Functions … (Version 3)”

• N1547: “Comments on the Initialization of
Random Engines”

• N1588: “On Random-Number Distributions …”
• N1611: “Implicitly-Callable Functions …”
• Additional information

The C++ Standards Committee:
Progress & Plans

February 17, 2004

Walter E. Brown Marc F. Paterno

Computing Division

f Fermi National Accelerator Laboratory

